Plato: A Selective Context Model for Entity Resolution
نویسندگان
چکیده
منابع مشابه
Plato: A Selective Context Model for Entity Resolution
We present Plato, a probabilistic model for entity resolution that includes a novel approach for handling noisy or uninformative features, and supplements labeled training data derived from Wikipedia with a very large unlabeled text corpus. Training and inference in the proposed model can easily be distributed across many servers, allowing it to scale to over 10 entities. We evaluate Plato on t...
متن کاملAn Entity Based Model for Coreference Resolution
Recently, many advanced machine learning approaches have been proposed for coreference resolution; however, all of the discriminatively-trained models reason over mentions rather than entities. That is, they do not explicitly contain variables indicating the “canonical” values for each attribute of an entity (e.g., name, venue, title, etc.). This canonicalization step is typically implemented a...
متن کاملUnsupervised Ranking Model for Entity Coreference Resolution
Coreference resolution is one of the first stages in deep language understanding and its importance has been well recognized in the natural language processing community. In this paper, we propose a generative, unsupervised ranking model for entity coreference resolution by introducing resolution mode variables. Our unsupervised system achieves 58.44% F1 score of the CoNLL metric on the English...
متن کاملA Latent Dirichlet Model for Unsupervised Entity Resolution
Entity resolution has received considerable attention in recent years. Given many references to underlying entities, the goal is to predict which references correspond to the same entity. We show how to extend the Latent Dirichlet Allocation model for this task and propose a probabilistic model for collective entity resolution for relational domains where references are connected to each other....
متن کاملA Latent Dirichlet Allocation Model for Entity Resolution
In this paper, we address the problem of entity resolution, where given many references to underlying objects, the task is to predict which references correspond to the same object. We propose a probabilistic model for collective entity resolution. Our approach differs from other recently proposed entity resolution approaches in that it is a) unsupervised, b) generative and c) introduces a hidd...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the Association for Computational Linguistics
سال: 2015
ISSN: 2307-387X
DOI: 10.1162/tacl_a_00154